830 research outputs found

    The topological structure of 2D disordered cellular systems

    Full text link
    We analyze the structure of two dimensional disordered cellular systems generated by extensive computer simulations. These cellular structures are studied as topological trees rooted on a central cell or as closed shells arranged concentrically around a germ cell. We single out the most significant parameters that characterize statistically the organization of these patterns. Universality and specificity in disordered cellular structures are discussed.Comment: 18 Pages LaTeX, 16 Postscript figure

    Gauge theory approach to glass transitions

    Full text link
    This theory combines a thermodynamic approach with a dynamic one in order to describe glass transition. Glass transition is regarded as an inaccessible second order phase transition, which is interrupted because of premature critical slowing down, caused by the system's frustration. The frustration-induced vortices are present in the structure besides thermoactivated vortices, and prevent the development of the order parameter fluctuations, that leads to the critical slowing down the system kinetics at some temperature above the phase transition point

    The perimeter of large planar Voronoi cells: a double-stranded random walk

    Full text link
    Let p_np\_n be the probability for a planar Poisson-Voronoi cell to have exactly nn sides. We construct the asymptotic expansion of logp_n\log p\_n up to terms that vanish as nn\to\infty. We show that {\it two independent biased random walks} executed by the polar angle determine the trajectory of the cell perimeter. We find the limit distribution of (i) the angle between two successive vertex vectors, and (ii) the one between two successive perimeter segments. We obtain the probability law for the perimeter's long wavelength deviations from circularity. We prove Lewis' law and show that it has coefficient 1/4.Comment: Slightly extended version; journal reference adde

    Double tungstate lasers: From bulk toward on-chip integrated waveguide devices

    Get PDF
    It has been recognized that the monoclinic double tungstates KY(WO4)2KY{(WO_4)}_2, KGd(WO4)2KGd{(WO_4)}_2, and KLu(WO4)2KLu{(WO_4)}_2 possess a high potential as rare-earth-ion-doped solid-state laser materials, partly due to the high absorption and emission cross sections of rare-earth ions when doped into these materials. Besides, their high refractive indexes make these materials potentially suitable for applications that require optical gain and high power in integrated optics, with rather high integration density. We review the recent advances in the field of bulk lasers in these materials and present our work toward the demonstration of waveguide lasers and their integration with other optical structures on a chip

    From one cell to the whole froth: a dynamical map

    Full text link
    We investigate two and three-dimensional shell-structured-inflatable froths, which can be constructed by a recursion procedure adding successive layers of cells around a germ cell. We prove that any froth can be reduced into a system of concentric shells. There is only a restricted set of local configurations for which the recursive inflation transformation is not applicable. These configurations are inclusions between successive layers and can be treated as vertices and edges decorations of a shell-structure-inflatable skeleton. The recursion procedure is described by a logistic map, which provides a natural classification into Euclidean, hyperbolic and elliptic froths. Froths tiling manifolds with different curvature can be classified simply by distinguishing between those with a bounded or unbounded number of elements per shell, without any a-priori knowledge on their curvature. A new result, associated with maximal orientational entropy, is obtained on topological properties of natural cellular systems. The topological characteristics of all experimentally known tetrahedrally close-packed structures are retrieved.Comment: 20 Pages Tex, 11 Postscript figures, 1 Postscript tabl

    Asymptotic statistics of the n-sided planar Poisson-Voronoi cell. I. Exact results

    Full text link
    We achieve a detailed understanding of the nn-sided planar Poisson-Voronoi cell in the limit of large nn. Let p_n{p}\_n be the probability for a cell to have nn sides. We construct the asymptotic expansion of logp_n\log {p}\_n up to terms that vanish as nn\to\infty. We obtain the statistics of the lengths of the perimeter segments and of the angles between adjoining segments: to leading order as nn\to\infty, and after appropriate scaling, these become independent random variables whose laws we determine; and to next order in 1/n1/n they have nontrivial long range correlations whose expressions we provide. The nn-sided cell tends towards a circle of radius (n/4\pi\lambda)^{\half}, where λ\lambda is the cell density; hence Lewis' law for the average area A_nA\_n of the nn-sided cell behaves as A_ncn/λA\_n \simeq cn/\lambda with c=1/4c=1/4. For nn\to\infty the cell perimeter, expressed as a function R(ϕ)R(\phi) of the polar angle ϕ\phi, satisfies d2R/dϕ2=F(ϕ)d^2 R/d\phi^2 = F(\phi), where FF is known Gaussian noise; we deduce from it the probability law for the perimeter's long wavelength deviations from circularity. Many other quantities related to the asymptotic cell shape become accessible to calculation.Comment: 54 pages, 3 figure

    Analysis of signalling pathways using continuous time Markov chains

    Get PDF
    We describe a quantitative modelling and analysis approach for signal transduction networks. We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK+03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous processes and reactions by transitions. Concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis such as what is the probability that if a concentration reaches a certain level, it will remain at that level thereafter? or how does varying a given reaction rate affect that probability? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Topological correlations in soap froths

    Full text link
    Correlation in two-dimensional soap froth is analysed with an effective potential for the first time. Cells with equal number of sides repel (with linear correlation) while cells with different number of sides attract (with NON-bilinear) for nearest neighbours, which cannot be explained by the maximum entropy argument. Also, the analysis indicates that froth is correlated up to the third shell neighbours at least, contradicting the conventional ideas that froth is not strongly correlated.Comment: 10 Pages LaTeX, 6 Postscript figure

    On Random Bubble Lattices

    Full text link
    We study random bubble lattices which can be produced by processes such as first order phase transitions, and derive characteristics that are important for understanding the percolation of distinct varieties of bubbles. The results are relevant to the formation of topological defects as they show that infinite domain walls and strings will be produced during appropriate first order transitions, and that the most suitable regular lattice to study defect formation in three dimensions is a face centered cubic lattice. Another application of our work is to the distribution of voids in the large-scale structure of the universe. We argue that the present universe is more akin to a system undergoing a first-order phase transition than to one that is crystallizing, as is implicit in the Voronoi foam description. Based on the picture of a bubbly universe, we predict a mean coordination number for the voids of 13.4. The mean coordination number may also be used as a tool to distinguish between different scenarios for structure formation.Comment: several modifications including new abstract, comparison with froth models, asymptotics of coordination number distribution, further discussion of biased defects, and relevance to large-scale structur
    corecore